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Structure and space I

Relate : Structured input←→ Space

• Input :
1 samples for inference→ output estimator
2 dataset for learning→ network
3 observations for decision/choice of policy (POMDP)→ actions
4 optimization over parameters (output) conditionned by input
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Structure and space II

• Structured input→ Space
∗ Space in which one represents structured input

• Structure← Space
∗ Space of (representation of) inputs itself has additional structure

• Combinatorics and optimization
∗∗ Combinatorics : structure represented as space.
∗∗ Optimisation : optimization over spaces representing combinatorial

structures.
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Equivariance I

• Symmetries (structure) act on the space of inputs.
∗ Input← Images
∗ Symmetries/group← Translations, rotations

• Learn invariant features
• How ?

∗ Equivariant neural networks : output space is structured by
symmetries.

∗ Average pooling→ invariant features
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Equivariance II

• Invariant representations in self-supervised learning
∗ Symmetries⇝ Augmentations, different view on data
∗ Adapt loss to account for this structure: Barlow-Twins [ZJM+21],

VICReg [BPL22]
∗ Medical images: CT volumes segmentation/classification (data

scientist at Median Technologies )

• Go beyond translations, rotations?
∗ Finite groups : permutations
∗ Infinite dimension group

• Infinite dimension group
∗ Why? → Input with uncountable degrees of freedom
∗ e.g. Shapes, fluids
∗ Biggest possible group : diffeomorphisms Diff
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Equivariance III

• Infinite dimension groups
∗ Characterization of networks equivariant to Diff ,
∗ On Non-Linear operators for Geometric Deep Learning, Neurips

2022 [tMBO22] with J.Maier, J. Bruna, E. Oyallon
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Example of Structure: dependencies between
variables I

Example of structure:
• Dependencies between variables→ Graphical Model

∗ Graph G = (V ,E), V vertices, E edges
∗ V ← variables (Xi , i = 1...n)
∗ E ← modeled dependencies between variables

• Example : Markov Chains (MDP: Markov Decision Process)

V = (X1,X2,X3) Hammersley–Clifford theorem (e.g. see [19] )
E = {(X1,X2), (X2,X3)}

X1 −→ X2 −→ X3 PX1,X2,X3 = f12(X1,X2)f23(X2,X3)
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Example of Structure: dependencies between
variables II

• Graphical Model
∗ HMM for Partially Observable Markov Decision Process (POMDP):

X1 X3X2

π12 π23

Y1 Y2 Y3

p(Y1|X1) p(Y2|X2) p(Y3|X3)

• Inference on graphical models? → Bioinformatics [TtB21][Tt21]
∗ Viterbi algorithm
∗ Em algorithm for HMM: Baum-Welch algorithm
∗ Forward-Backward algorithm⇝ Message Passing algorithms.
∗ Computing marginals efficiently→ Belief Propagation
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Example of Structure: dependencies between
variables III

Interpretation of Belief Propagation
• Belief propagation (BP) is an optimization method of entropy for

Graphical Models
∗ Fix points of BP↔ critical points of entropy over a Graphical Model.

• restate as Belief propagation (BP) is a variational inference
method for Graphical Models
• Why? Key argument: a Graphical model can be represented a a

constrained space (see for example introduction in [22]).
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Representing the Structure of Graphical Models
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Representation of graphical model II
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X2
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Transformation of Graphical Model to factor graph

Graphical Model
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Factor graph : Bipartite
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Representation of graphical model III

Transformation of factor graph to enriched graph

Factor graph : choice of a direction Enriched nodes

X1

X3

X2

X4

f12

f13

f34

PX1 PX3PX2 PX4

P(X1 × X2)

f12

P(X1 × X3) P(X3 × X4)

f13 f34
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Representation of graphical model IV

Enriched graph

Enriched edges

PX1 PX3PX2 PX4

P(X1 × X2) P(X1 × X3) P(X3 × X4)

∑
X1

∑
X2

∑
X3
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Representation of graphical model V

Transformation of Graphical Model to enriched graph

Enriched graph

PX1 PX3PX2 PX4

P(X1 × X2) P(X1 × X3) P(X3 × X4)

∑
X1

∑
X2

∑
X3

X1

X3

X2

X4

f12

f13 f34

Graphical Model

f12 f13 f34
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Representation of graphical model Last

From enriched graph to a constrained space
• Each arrow is a constraint on ‘q’:∑

X2
: P(X1 × X2)→ P(X1) ←→

∑
y2

qX1,X2(x1, y2) = qX1(x1)
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Other Structure: higher order of structure on input

Higher structures than graphs (hypergraphs, sheafs)
• When ?

∗ graph dependencies are not rich enough
∗ dependencies other than independence between variables.

• Example: General Belief Propagation [YFW05], Message passing
on Sheaf Neural Networks [BDGC+22]

BP is a particular case of a correspondence that holds for
Higher structured dependencies [22]
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Higher order correspondence: Example of Motivation I
[22]

Data with multiple point of view on it: for example images of Dog with
two types of blurs at different intensity of blurring
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Motivation II [22]

Cat with two types of blur at different intensity of blurring:

How to classify dogs and cats taking into account the extra data given
by the different point of views?
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Key ingredients

• In this example dependencies are given by the blurring applied to
go from one image to an other; more generally : several (local)
views on parameters with compatibility conditions
• There is a loss on each view (local loss)

• Problem? solve the global optimization problem (made up of local
ones) over the compatible local views.
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What to learn from Structure↔ Space?

• With these two examples, we want to stress that more generally:
∗ looking for structured representations can guide the design of

algorithms for learning (translation→ CNN, Barlow-Twins loss)
∗ but also help understand what it does (correspondence BP↔

Entropy over some constraint)
• A geometric interpretation of an algorithm allows for easier

generalization and better transfer to other problems ( Higher order
of structure correspondence)
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Structured latent spaces for social agents I

• Setting : exploration and exploitation (POMDP)
• Multi-agent

∗ Standard framework: agent have internal models of their
environment and of other agents + beliefs.

∗ They make observations to update their beliefs.

• How to account for perspective taking on the environment?
∗ the agent changes its perspective, can take perspective of others.
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Structured latent spaces for social agents II

In [RtB+22][RtT+21] we propose,
• Homogeneous treatment of integrated information in the latent

space
• the extra information of a frame (collection of coordinates) in this

space
• action through changes of frames
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Structured latent spaces for social agents III

• Geometry offers many properties that allow for intertwining
representation of information and integration of information
(selection of information) in a way compatible with perception

Allow to model in a uniform way :
∗ Attention
∗ Emotional reward
∗ Epistemic drive : acting in order to reduce uncertainty
∗ Taking perspective of others.

• Interestingly: perspective taking changes exploration behaviour.
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